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where ao,, bos are the coefficients of ¢, y, in the NBMO’s.
Usually the first approxiination (Rrg = 2aorbesBrs) Will be
found sufficient.

Alternant Molecules: ‘‘Starring.”’—Most of the present
discussion will be confined to altermant mesomeric systems;
that is, systems where the conjugated atoms can be divided
into two sets such that no two atoms of the same set (like
parity) are directly linked. The two sets are termed
starred and wunstarred, respectively, the designation being
arbitrary. The only types of mesomeric system excluded
by this restriction are those containing odd-numbered rings.
Such non-alternant compounds are difficult to analyze by
methods now available, although a certain amount of infor-
mation about them will be derived in the present investiga-
tion. The special properties of alternant hydrocarbons (AH)
were first pointed out by Coulson and Rushbrooke,!® and
they have been studied further by Coulson and Longuet-
Higgins.?

Validity of the Approximation.—The kind of accuracy to
be expected in quantitative applications of the method may
be indicated by an example; the calculation of the resonance
energy of butadiene considered as a combination of two
molecules of ethylene. If the resonance integrals of the
terminal bonds in butadiene are 8, and of the central bond
xB, equations (16) or (17) give
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If x = 1, the values obtained are 0.58 and 0.4728, respec-
tively; if ¥ < 1, to allow for the fact that the 2:3 bond in
butadiene is longer than the others, the agreement is even
better.

Glossary

Alternant!®: an alternant mesonieric system is one in which
the conjugated atoms can be divided into two sets such
that 1o two atoms of the same set (like parity) are di-
rectly linked. One set is termed °‘‘starred,”’ the other
“‘unstarred,”’ the designation of the sets being arbitrary,

AH: an alternant hydrocarbon.

Odd, even: a mesomeric systemn is classed as odd or even
according as the number of conjugated atoms in it is odd
or even. An even AH is a ‘‘normal’’ hydrocarbon,
whereas an odd AH is necessarily a radical or ion (e.g.,
PhCH.¥, PhCHy).

MO, AO: Molecular Orbital, Atomic Orbital.

Starring: sce alternont. If the numbers of atonis in the two
sets are unequal, the more numerous set will be starred.
NBMO: Nou-bonding Molecular Orbital.® An odd MO
in an odd AH or non-Kekulé AH which has zero energy
(i.e., energy in this approximation identical with that of

a carbon 2p AO).

Active, inactive atom?®; au inactive atom in an odd AH is oue
the coefficient of whose AO vanishes in the NBMO.

CF: Canonical Form (= resonance structure)

Kekulé compound: a comnpound with at least one unexcited
CF.

Isoconjugate’: two mesomeric compounds are termed iso-
conjugate if they contain similar numbers of conjugated
atoms in similar arrangements, and also similar numbers
of delocalized electrons (e.g., benzene, pyridine, pyrimi-
dine are isoconjugate).

R = lxzﬁ (43) Cross-conjugation: an odd mesomeric system is cross-con-
2 jugated if in the isoconjugate odd AH not all the starred
. . . . atoms are active.
Solutious of the secular equation gives TS: transition state.
R = 28[(x? + 4)'/2 — 2] (44) NOTRE DAME, INDIANA
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The methods of Part I! are used to establish a series of theorems which make it possible to account for the properties of
alternant hydrocarbons. In particular conditions are derived for a system to be mesomeric, and for a mesomeric system to
be aromatic. The unique position of benzene and azulene as units of aromatic structures is interpreted, and the nature of
degeneracy and fractional bond order is discussed. The significance of classical bond structures is considered and an explana-
tion given for the instability of compounds for which no unexcited structures can be written. The treatment follows the
lines laid down by Coulson, Longuet-Higgins and Rushbrooke,*=% to whom a number of the theorems are due; but most of

the results are new since they are derived ultimately from theorem 13 which is novel.

Here the methods previously described! will be
used to study mesomerism and aromaticity. The
results appear as a series of formal theorems; of
these the first ten have already been established by
Coulson and Rushbrooke,® by Coulson and Lon-
guet-Higgins,* and by Longuet-Higgins.® They
are stated without proof to save continual reference
to the original papers.

In theorems 11-17 the effect of conjugation be-

(1) For Part I see TH1S JOURNAL, T4, 3341 (1952).

(2) Reilly Lecturer March-April, 1951. Present address: Univer-
sity of London, Queen Mary College, Mile End Road, London E.1,
England. ’

(3) C. A. Coulson and G. S. Rushbrooke, Proc. Camb. Phil. Soc., 86,
193 (1940).

(4) C. A. Coulson and H. C. Longuet-Higgins, Proc. Roy. Soc.
(London), A191, 39 (1947); A1932, 16 (1947); A193, 447, 456 (1948);
A195, 188 (1948).

(5) H.C, Longuet-Higgins, J. Chem. Phys., 18, 265, 275, 283 (1950).

tween parts R and S on the total energy of an AH
RS is studied, and also its relation to the orders of
the bonds linking R to Sin RS. Here, as through-
out this series of papers, single attachment of R to
S will usually be assumed since the results can at
once be generalized to cases of multiple attachment
by using equation (5) of Part I.! The most impor-
tant result of this section is that of theorem 13.

Theorems 18 and 19 relate the resonance energies
of AH’s differing by one carbon atom. In theorems
21-24 the nature of aromaticity is discussed and
reasons given for its limitation to certain types of
ring system; and in theorems 25, 26 the related
problem of partial bond order is considered and
reasons given for the relative constancy of bond
lengtlis in aromatic compounds in contrast to the
large difference between ‘‘single” and ‘‘double’’
bonds in aliphatic structures.
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In the remaining theorems the significance of
classical bond structures is discussed and reasons
given for the well-known fact that no compound is
stable unless at least one such structure can be
written for it. A preliminary junction with reso-
nance theory is made at this point.

Za,,fr =1,
w

charge density at any atoin in a conjugated systemt duc to
oce

the mobile electrons, is two siuce ¢, = 2 Z ).
m

Theorem 2. If the total energy of the mobile electrons is E,
then OE /oo, = q., where o is the coulomb term of atom t.

Theorem 3. Likewise —E /38w = 2pr

Theorem 4. The energy levels of an even AH (i.e., an alter-
nant hydrocarbon with an even nwmber of conjugated atoms)
occur in pairs, of energy £E,.

Theorem 5. The coefficients of the AO's in such a pair af
related MO's of an even AH are identical in absolute magni-
tude, and differ only in that the signs of one set of AOQ's of
similar parity are inverted.

Theorem 6. The energy levels of an odd AH occur in pairs,
«s do those of an even AH; the odd NBMO lcft over has zero
cnergy, and the coefficients of the unstarred AQ’s vanish.

Theorem ©. If the NBMQO cocficients of the A0's of
atoms v, s, i, . . linked to an unstarred atom p inan odd AH

are e, , then Z QorBpr = ().

enables oune to write doml the NBMO coetiicients for an
odd AH at sight, without solving any secular equations.
It will usually be assuined that the 8's are all equal, when

Z Gy = 0,

;
Theorem 8,
atom is unity.
Theorem 9. The resonance energy in, and bond arders of
an alternant heterocyclic compound are the same, to a ﬁrsi
approximation, as those of the cquivalent AH.

Theorem 1. (This implies that the maxunum

Qos Aoy . This important result®

Inoa newtral A1, the churge density at cach

Theorem 10, 7ps = o and wy, = > g where wp, 1S

4
the mutual polarizability of atoms r, s, > the bond-atom
polarizability between atom r aud the bond between atoms
s, t and w4 the correspouding atom-bond polarizability.$

Theorem 11. The resonance energy of RS relative to K +
S, where R and S are even, 1s given approximately by Bprs.
This result follows at once from equations (29) and (41 Jof
PartI.!

Theorem 12. If R, S are both odd radicals and if their
singly occupied MO’s are of like energy then Rug (the resonance
energy of RS relative to (R + S)) is given approximately by
2Bprs.  This result follows likewisc from equations (11) and
(42) of Part 1./

Theorem 13. If R, S are odd AH radicals, then Rgpg is
given approximately by 2u,b,8. This follows at once from
equation (42) of Part I!; the extension to the case where
R, S are multiply linked is obvious.

Theorem 14. If R, S are not both odd, then Rys varies
approximately as B*. This follows at oucc from equation
(41) of Part 1.1

Theorem 15, If R, .S wre haoth odd radicals, wd if their
singly occupied M (O's have like enerygy, then Rgpe vuries ap-
proxinately as 3. This follows likewise from equation (42
of Part 1.2

Theorcm 16, In an even alternant concpound with n
conjugated atoacs, of which not nore than one 4s a hetcepatom,
there are n levels with positive, n with neyative cnergy. Lot the
compound be RS, derived from an odd AH R and a hcetero-
atom S of coulomb term «.  Then the secular equation of RS

is given® by
o — L u,mréj f_ = (1)

Vo
(W — Yy S — _
(W — En) 1 1 W ¢

(i) These coefficients are defined? by
Teg = a(]:,"aas; Tstr = OPSL,‘ Qor; Trosz = Ogr,"ladsc
They sndieate thie variation in properties of tlie molecule witlt thic

yesontonee integrals of bonds and conlomb ternis of atoms in jt.
V3 ML TS0 Dewar, Proc Cowil, P Souc., 4B, 630 (1919
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The roots of this equation differ froin the E, unless there is
degeneracy, or unless a coefficient ay, vanishes; and from
theorems (4) and (5), and the discussion of degeneracy in
Part I,! it follows that the identical roots must factorize out
of equation (1) in pairs, with energies ==E,. Therefore the
theorem need be proved only for the roots of the simpler
cquation of order 2p

(W)= W — a — 2 amrB 9
(W)= —a- 2t =0 (@
where the identical roots of (1) have beeil removed. Now
f(TW) has asymptotes at W = E,, aud it is easily shown that

be(W) >0 (3)
Thus the energy levels of RS interlace with those of R; and
since (2p — 2)levels of R occur in pairs of energy =En, and
the remaining level has zero energy, p roots of (2) are positive
and p negative; this proves the theorem.

It can be shown that the same result will usually hold for
systems with more than one heteroatom, unless the ratio
of their nuinber to that of carbon atoms is high or their
electron affinities great.

Theorem 17. Rgg > 0. This follows at once from theo-
rem 16 and equations (41) and (42) of Part I,1if RS contains
not more than one heteroatom, for all the terms in the ex-
pressions for Rrg are then positive. The extension to cases
with several heteroatoms is less definite but it can be made in
first approximation by invoking theorem 9.

Theorem 18. The difference in total mobile électron energy
between an even AH with n conjugated atoms, and the odd AH
with (n + 1) conjugated atoms formed from it by attaching a
carbon atom to it at one point, is of order B, but somewhat less
than 8. Let the even AH be R, the atom S. Then the
energy difference is given by (¢f. equation (32) of Part I')

oce all

‘= _QZamrB Zamrﬁ

» »

oce an 6
= -2 Z imr (4)
»t
since RS is au AH (¢f. theoremns 4, 5).
at atom 7 is given by theorem 1

The charge density

oce
»t
To a first approximation

oce
(lmrlﬁ g?
:“ Z £ =T (6)
Z E)YL Enl

where E,, is the mean value of E,,. Now if the resonancc

cnergy of R were zero, E, would equal — B. The actual
resonarnce euiergy is positive (theorem 1() but small com-
pared with the total w-electron energy since it represents
only a small perturbation of the total =-electron energy.
Heuce E,, is slightly less than — 8, and so AE is slightly less
than 8, but of the same order of inagnitude.

Theorem 19. Likewise addition of one ecarbon to an odd
AH, giving an even AH with one more conjugated atom,
lowers the total w-electron cnergy by somewhat more than 8.
Let the odd AH be RS, derived fronm an cven AH R and an
atomr . Let addition of a further atom T give theeven AH
RST. From thcorem 17, the resonance cuergy of RST
rclative to (R + ST) 7.e., (R + cthylene), is positive. The
difference in m-clectron energy between R and RST is there-
fore greater than 28 (though only slightly greater, sincc the
difference is a second-order perturbation). But from
theorem 18, the difference in z-electron energy between
R and RS is somewhat less than 8. Hence the difference
in m-electron eunergy between RS and RST is somewhat
greater thau 3.

Theorem 20. The difference in total w-electron energy be-
tween an odd AH R and an even AH RS formed by adding

one atom S, is given by 2[32&0, where S is attached to R at

atoms r. This follows from Theorem 13. It is an im-
portaut resnult since the NBMO coefficients of an odd AH
cun be caleulated so simply (theorem 7), and since energy
differences of this tvpe govern the rates of many reactions.
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Theorem 21, Even alternant compounds containing six-
membered mesomeric rings are more stable than corresponding
open-chain compounds by approximately 8 per ring. Con-
sider the corresponding AH RS, derived from an odd AH
radical R and an atom S, where S forms part of the ring.
From theorem 20

Rgg = Zﬁ(aor + aot) (7)

where atom S is attached to atoms r, t. Now two open-
chain compounds (RS)’, (RS)” cau be derived by attaching
atom S to atom r only, or to atomn t only; the corresponding
resoudiice energies are

R'rs = 28(aor) (8)
R’rg = 28(aot) (9)

and fromn theorem 19, both R’gg and R"grg are of order 8.
Hence from equations (7-9), Rgps is greater than R'gg or
R’gg by approximately 8, which proves the theorem for the
monocyclic case. The argument can be extended in a simi-
lar manner to polycyclic compounds. For an illustrative
example see Theorem 23.

Theorem 22. A mnon-alternant even AH with one odd-
numbered ring has approximately the sawme resonance energy
as an AH derived from it by opening the ring. The proof
follows the same lines as that of theorem 21; but here atom
S (in the odd-numbered ring) is attached to gtoms (r, t) of
opposite parity. Hence either a, or ao, vanishes. Also
RS can be converted to a classical AH by breaking the bond
between S and that atom r or t whose coefficient vanishes
in the zero MO of R. From equations (7-9), it follows that
such a change leaves the energy unchanged in first approxi-
mation.

Theorem 23. Azulenes should be semi-aromatic, having
resonance energies intermediate between corresponding de-
capentaene and naphthalene derivatives. Consider azulene (1)
itself. Azulene can be derived from a carbon atom and a
nonatetraenyl radical (II); as also can the three analogous
decapentaenes (III), and naphthalene (IV). The NBMO
cocfhicients of (II) can be calculated by using theorem 7 and

are given in (II)
N M)
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The approximate differences in melectron energy between
(I), (II1) and (IV) can be calculated from theorem 20

/\\

I = 2845
I=48V5
IV = 685 (10)

Heunce azulene is approximately half-way between naph-
thalene and decapentaene in stability. The proof can be
c¢xtended to auny azulene derivative, containing no ather
odd rings, since in cach case removal of one azulene bridge
carbon leaves an AH radical, and in reconstructing azulene
from it, only two of the NBMO coefficients at the points of
attachment are non-vanishing, whereas all three are non-
vanishing in the isomeric naphthalene.

Theorem 24. Azulene and benzene are the fundamental
units of evem aromatic systems. Consider first a cyclic AH
RS with 2% atoms in the ring. Removal of one atom S
from the ring leaves an open-chain AH radical R, in which
the NBMO coefficients are alternately = #!/2 (theorem 7).
The energy of the cyclic AH is then given relative to R by

Rps = 28(n'/2 + (—1)n'/z) (11)

If # is even, Rpg vanishes; if # is odd, Rgg is apprexiinately
double the value R’rs, of an analogous open chain polveuc.
Thus aromatic character is confined to compounds with 6-,
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10-, 14- . . . numbered rings; and since the resonance en-
ergy can be large only if the rings are approximately planar
and symmetrical, steric factors tend to limit aromatic prop-
erties to six-rings. The same argument can be applied in
the bicvclic non-alternant series to show that azulene oc-
cupies a unique position. (It corresponds actually to the case
of a simple 10-ring, the ¢rans-annular bond not contributing
to the stability, but assisting with the stereochemical diffi-
culties. Similar behavior may be anticipated in higher
members of the series, e.g. (V), but the tendency to isomer-
ize to 6-ring derivatives should become progressively greater,
and the effective stability progressively less. Thus iso-
merization of (V) to anthracene should be about twice as
exotherniic as isomerization of azulene to naphthalene).

VAY/AVAAN Va V4
[ [ or i \[
VYVY O NAAS
A
Theorem 25. The bond-orders in an open-chain polyene
alternate, the structure corresponding qualitatively to the

classical representation. Let the polyene be RST, where S
is a carbon atom linked to polyene fragments R, T. Let
R be singly linked to S in the classical representation of
RST; then R is an even AH. Likewise if T is doubly
linked to S in the classical representation, T is an odd AH.
To a first approximation (first-order perturbation theory)

Prs =0
Prt = Qo (12)

where a.; 1s the coefficient of the NBMO of T at the point
of attachment of R. The second-order perturbation terms
should be less than these first order ones; therefore the classi-
cal ““double’” bond ST has a higher order than the ‘‘single”
bond RS. The argument can be applied successively to
each atom in the polyene, thus proving that the ‘““double”’
bonds have uniformly higher orders than the ‘‘single’’ ones.

Theorem 26. Bond orders in aromatic compounds alter-
nate less than those n polyenes. This can be proved by the
same argument used in proving theorem 25; here there is a
first-order perturbation contribution to each bond. The
relative bond orders can be found approximately by the
NBMO method outlined above. The radicals (VI) and
(VII) have the indicated NBMO coefficients; hence the 1:2
bond in naphthalene has approximately twice the order of
the 1:9 or 2:3 bonds.

—a
2a
—af N 1 2a /
k/ (@ =11744) (@ = 8 )
NS IV AVE
a —2a —a
VI VII

The values of bond orders so calculated are only verv ap-
proximate since the second-order perturbation coutributions
are appreciable; particularly in large molecules.

Kekulé Forms,—It has long been known that as
a rule compounds are stable only if classical struc-
tures can be written for them in which all the bonds
are real (7., join atoms which are at approximately
their normal bond-length apart). Thus o- and p-
benzoquinone are well known, but the m-isomer has
never been prepared. The special importance of
such Kekulé forms, as they may be termed, may
now be investigated, since the MO theory does not
directly ascribe importance to classical bond struc-
tures. Compounds for which one or more Kekulé
forms may be written will be called Kekulé com-
pounds, those with no Kekulé forms, non-Kekulé
compounds. In each lowest-excited canonical form
(CF) for a non-Kekulé compound, two or more
atoms will be linked by virtual bonds. Such atoms
will be called active (¢f. Longuet-Higgins®). Con-
sider one CF of an alternant non-Kekulé compound,
and consider a starred® active atom in it. Other
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similar CF’s can then be obtained by allylic shifts
of the active atom; e.g.

| i
>C—C—=Cp< <—> >Cr—=C—Cs<

The path over which the activity of the starred
atom can be transferred may be termed a starred
segment of the molecule; likewise an unstarred ac-
tive atom will define an unstarred segment.

Theorem 27. A non-Kekulé AH with m active atoms has
m MQ’s of zero emergy. This theorem is due to Longuet-
Higgins®; the proof given here provides a clearer insight
into the phenomenon. Consider first the case where the
active atoms A, A; . . . A, are all starred. Consider the
residue R left when the active atoms are removed from the
system; R is then by definition an even Kekulé AH. Con-
sider the odd AH radical RA;; this will have a NBMO
covering only starred atoms (A, being starred). Now re-
generate the original AH by adding the atoms (A: . . . An).
Since these are attached to unstarred atoms in RA;, where
the coefficients of the NBMO in RA; vanish, they do not
affect that MO (¢f. Part ['). Likewise the NBMO’s of
RA:, RA;, RA, survive intact in the parent AH, which
therefore contains m independent NBMO’s.

Now consider the case where there are both starred and
unstarred active atoms preseunt, It is evident that no
starred segment of the AH can contain an unstarred active
atom; otherwise a starred active atom could be brouglht
next to it by allylic shifts, and an extra real bond then
formed-—in contradiction to hypothesis. It is also evident
that a starred segment can be attached to the rest of the
molecule only through unstarred atoms; otherwise the
active atoimns could be transferred outside the active segment
by allylic shifts. Let the starred segment coutain r active
atoms and consider the starred segment in isolation. It
will contain r NBMO’s with deunsity vanishing at unstarred
atoms. Since the rest of the molecule is attached to it
only at unstarred atoms, these NBMO’s must survive in-
tact in the whole molecule. The same argument applies to
each of the other segments, starred or unstarred, so that the
whole molecule, with m active atoms, must have m NBMO’s.

Theorem 28. A4 non-Kekulé AH is a polyradical. This,
as Longuet-Higgins® has pointed out, is an immediate corol-
lary of theorein 27 and Hund’s rule.

Theorem 29. A non-Kekulé AH is less stable than o Kekulé
isomer. Consider a non-Kekulé AH RA, A being an active
(starred) atom. Since the NBMO’s of R have zero density
at the point of attachnmient of A, R and RA have similar
r-electron energies in the approximation of first-order per-
turbation theory {theorem 13). Consider an isomer R’A,
where A is attached at an active atom in R; if the coefh-
cients of the NBMOs of R at this atom are a.,, 4, . . . ¢or.
then the w-electron energy difference A bhetween RA and
R’A, will be given by (theorem 13)

AR = =28 au
r

to a first approximation. Also R’A evidently contains two
active atoms less than does RA. Continuing this argument,
the most stable isomrers of RA will be those with the fewest
active atoms—.e., the Kekulé isomers.

Theorem 30, If an AH has n starred atoms and m un-
starred atoms (n > m), at least (n — m) atoms are active.
This is an evident corollary from the method of proof of
theorem 27.

Theorem 31. Theorem 25 holds also for heteroatomic al-
ternant systems. This follows from theorem 9. Theorems
27 and 28 do not hold for heteroatomic systems, so this re-
sult alone accounts for the instability of non-Kekulé hetero-
atomic compounds.

Theorem 32. At least two unexcited CF’s can be written
for an aromatic AH. This follows fromn the method of
proof used in theorem 21; the two unexcited CF’'s corre-
spond to the open-chain compounds (RS)’ and (RS)”-

Theorem 33. Symmetrical monocyclic AH’s with 4n con-
jugated atoms are biradicals. This follows from the method
of proof of theorem 24; if the AH RS, with 4n atoms is dis-
sected into an odd AH R and one atom S, the NBMO of
R survives in RS, Since NBMO’s in an even AH can oc-
cur only in pairs (theorem 4), RS contains at least two
NBMO’s and is therefore a biradical. This theorem is not

(13)
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of much importance since cyclobutadiene does not seem to
exist as a stable entity, and since the higher members of the
series are prevented by stereochemical factors from adopting
symmetrical coplanar structures.

Discussion

This set of theorems provides a satisfactory basis
for the discussion of mesomerism, and one free from
certain difficulties and inconsistencies of the current
VB approach.,

From theorem 9, due to Coulson and Longuet-
Higgins,* the structure and resonance energy of a
heteroatomic systems is similar in first approxima-
tion to that of an analogous hydrocarbon. From
theorem 17, it follows that a set of » atoms form a
conjugated system if AQ’s on those atoms mutually
overlap; and from theorem 16, the system will be
most stable if the # AO’s contain 5 electrons, or if
n is odd and they contain (n# == 1) electrons. From
theorems 14 and 15, the resonance energy will be
greater, the greater the resonance integrals between
the AO’s; this accounts at once for the fact that
conjugation is important only if the AQ’s are p or
dAQ’s, and if the AO’s overlap well (so that in the
usual systems with p AQ’s, the component atoms
should be approximately coplanar).

These rules for mesomerisim are more precise than
those given by resonance theory.! Thus they ac-
count at once for the difference between butadiene
and ethane; whereas in resonance theory, excited
CF’s such as (VIII) must be invoked to explain the
mesomerism of butadiene, and yet analogous ex-
cited CF’s such as (IX) can be also written for the
non-mesomeric ethane.

] H
CH|—CH=CI{2 "CH; CH]

VIII IX

-H
CH.

(Indeed, more such singly excited CF’s can be writ-
ten for n-butane than for butadiene, although the
resonarnce energy of the latter is much the greater.)

The neutrality and zero dipole moments of AH’s
are explained at once* by theorem 8; the theorem
does not apply to non-alternant hydrocarbons such
as fulvene or azulene, and these are now known to
have appreciable dipole moments. It does not
seem possible to account for this difference in any
convincing way on the basis of resonance theory,
but the moments have been interpreted theoreti-
cally® by use of the MO method.

It has been commonly suggested that the MO
method does not adequately account for the suc-
cess of classical valency structures in representing
the properties of simple molecules. This conten-
tion is met by the results of theorems 27-31, which
indicate the importance of such structures, and in-
dicate that compounds with no unexcited CF’s
should be relatively unstable (e.g., m-quinones).

Theorems 21-24 account for the special and spe-
cific stabilities shown by aromatic and pseudoaro-
matic structures, and for the lesser stability of the
latter (e.g., azulene) compared with the former.
Also the fact that open-chain polyenes can be rep-
resented approximately by single valence bond

(8) Cf. G. W. Wheland, ""The Theory of Resonance,” John Wiley
and Sons, Inc., New York, N. Y., 1944,

(9) Cf. G. W. Wheland snd D. B, Mann, J. Chem. Phys,, 17, 2064
(1949).
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structures, whereas aromatic and pseudoaromatic
compounds cannot, is explained by theorems 25 and
26.

The large stabilities of odd AH radicals is inter-
preted well by theorems 18 and 19; there is no great
difference in the average r-electron energy per con-
jugated atom between odd and even AH’s,

The analysis also provides some useful semi-quan-
titative methods for estimating the energy differ-
ences between odd AH’s and even AH’s derived
from them by addition or subtraction of carbon
atoms, and between AH’s and fragments obtained
by their dissection (theorems 7, 11, 12, 13, 20).
These methods will later prove of fundamental im-
portance in the interpretation of chemical reactivity
and light absorption. The resonance theory pro-
vides no analogous techniques. Admittedly at-
tempts have often been made to correlate the stabil-
ity of molecules with the numbers of unexcited CF’s
that can be written for them, but this procedure has
no basis in VB theory; and A. and B. Pullman?®
have shown that the assumption that unexcited
CF’s always make the major contribution to the
ground state of a molecule is itself quite incorrect.
(The problem will be discussed in detail elsewhere.)

The present treatment does show, however, that
at least ( + 1) unexcited CF’s can be written for
any aromatic compound with 7 six-rings (theorem
32); but it does not follow that an AH for which
two or more unexcited CF’s can be written will show
aromatic properties (¢f. the 4z-membered cyclic
polyenes which should show little extra stability
over open-chain analogs), However, the argu-
ments used to prove theorems 25 and 26 do imply
that alternation of bond orders should be small in
compounds for which two or more unexcited CF’s
can be written; and that such a compound should
not be represented accurately by a unique classical
bond structure, The present picture of mesoineric
molecules thus fits in well with the current reso-
nance interpretation, but it is more complete as well
as being better based in theory.

The resonance energies of aromatic compounds
can be calculated approximmately by using theorem
13, if m-electron energies of radicals obtained by its
fragmentation are known. Thus anthracene (X)
can be derived from the union of two benzyl radi-
cals (X1); the NBMO coefficients of the latter are
indicated in (XI)

—1V7 /
— 27 17
X XI

The m-electron energy of benzyl is easily calculated
to be 8.72B8. The m-electron energy ¢ of (X)
should then be given by

2

--) = 18588 (14)

e=2><8.72;3+23(§+7

Subtracting the energy of one unexcited CF (144),
the calculated resonance energy R is 4.5883, in fair

(10) A. Pullman and B. Pullman, Experientia, 2A, 364 (1946); cf.
A. Pullman, Thesis, Paris, 1946.
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agreement with the accurate MO value (5.318'),
The values calculated by this method should be too
low, since the higher order perturbation energies are
neglected; but there is an excellent linear correlation
between the approximate and exact values (Fig. 1).

or

AR/B by perturbation method.

4 5 6

0 1 2 3
AR/B from secular cquation.
Fig 1.

Although more exact empirical methods are avail-
able for estimating such resonance energies without
great computational labor,!? the present treatment
may be useful for rough calculations. For instance
it explains in a simple way why the linear polya-
cenes are less stable than the isomeric polyphenes;
thus in the formation of phenanthrene (XII) from
(X1), the first-order perturbation energy is greater
by 8/7 than in the formation of (X) from (XI);
and it can be shown that a similar relation holds
generally between isonieric acenes and phenes,

XII

One further point may be emphasized. It has
commonly been asserted on the basis of resonance
theory that mesomerism requires almost perfect
coplanarity of the conjugated system. This is
quite incorrect; theorems 14 and 15 sHow that the
resonance energy of RS relative to (R + S), al-
though greatest when the system is coplanar, varies
only as cos 6 or cos? § where 6 is the angle through
which S is twisted out of coplanarity with R; since
the resonance integral @Grs is given approx1mately
by
(14)

where Bks is the value of 8rs for an angle of twist
6. This factor becomes important in the triaryl-
methyl radicals which are very far from coplanar;
current calculations of their resonance energies are
undoubtedly incorrect (they assume coplanarity of
the molecule, which is impossible for steric reasons),

(11) G. W. Wheland, THis JOUrRNAL, 68, 2025 (1941).
(12) R. D. Brown, Trans. Faraday Soc., 46, 1013 (1950).

0
Brs = Bhrs cos f
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but so too is the argument that the resonauce ener-
gies of such non-coplanar compounds must be small
and their stabilities due solely to steric factors.

M. J. 5. Dewar

Vol, 74

This point will be discussed in more detail else-
where.

NOTRE DAME, INDIANA

|CONTRIBUTION FROM THE UNIVERSITY OF NOTRE DAME]|

A Molecular Orbital Theory of Organic Chemistry.

III.'* Charge Displacements and

Electromeric Substituents

By M. J. S. DEwar?®

RECEIVED SEPTEMBER 13, 193]

The methods of the preceding papers!:? are used to analyze the displace ments of charge in an AH when ong or more carbon
atoms are replaced by heteroatoms, or when electromeric substituents are introduced. The effects of heteroatoms had been
considered previously by Coulson and Longuet-Higgins,*3 but here they will be studied by an alternative and more accurate
micthod. Conditions are found for two electromeric substituents to conjugate with one another threugh an intermediate
mesoineric systemn. The results of this treatment agree qualitatively with those of current theory, but the possibility now
appears of estimating various effects semi-quantitatively withiu the limitations! of the present methods.

The next step in the program is to analyze the
nature, causes and effects of charge displacements in
conjugated systems due to the presence of hetero-
atoms and electromeric substituents. Consider-
able progress has been made already in the analysis
of changes in an AH caused by replacing one or
more carbon atoms by heteroatoms, by Coulson
and Longuet-Higgins* and by Longuet-Higgins®
I particular they were able to derive the classical
“law of alternating polarity” for such systems.
Here the same general problem is considered to a
higher approximation by using the new relations
given in Parts I'and I1.7 1t will also prove possible
to discuss the effects of electromeric substituents
which lay outside the scope of the previous treat-
ment, These two topics are discussed in theorems
34-39 and 40-45, respectively. Theorem 37 is due
to Longuet-Higgins.*

In theorems 46—44 the ability of two groups to
conjugate with each other ("‘'mutual conjugation'’)
through an intermediate mesomeric system is con-
sidered, and as a result rules (theorems 30-33) arc
found for descr.bing the relative activities of elec-
tromeric substituents semi-quautitatively (this
problem will be discussed further in Part VI,

Qualitatively, the present treatnient will be
found to give conclusions similar to those reached
by current theory.

Theorem 34. The main effect of an increase in electron
affinity of an unstarred atom in an even AH is lo decrease the
charge densities at all starred atoms. Let the AH be RS,
derived from an odd AH R and an atoin S of coulomb terin
«. 1If |a] is small, there will be a zeroth order perturbation
of the AO ¢ of § and the NBMO &, of R.  This effect will
be larger than auy due to higher periwrhations; and so o
lirst approximation to the changc‘iu charge density with «
nmy be found from 2 cousideration of thic corresponding
change in the pair of MO's arising from ¢ and &,.

The secula- cquation for the perturbed encrgies is

5 e B
4B W~ «

“1) For Part 1 see Tuis JournaL, T4, 3341 (1952},

(2} For Part 11 see ibid., T4, 3545 (1952),

(8) Reilly Lecturer, March-April, 1351, Present address: Univer-
sity of Leondon, Queen Mary College, Mile End Road, lLondou, E.1,
Englaad.

(4) C. A. Coulson and H. C. Longuet-Higgins, Proc. Roy. Soi.
(Lowdow), A191, 39 (1047); A193, 15 (1047); A183, 447, 436 (104,
A195, 188 (1948).

(5) H. C. Longuet-Higgins, J. Chent. Phys., 18, 365, 273, 285 (1930;.

= ! — aw — i Bt =10 (1)

with the solutions
1 N . .
W= (a=x(a®+ 4a5p)/) (2)
Of these the lower Jevel alone will be oecupied in RS, The
cocflicients bs of ¥, bo of $,, in this MO are given by

o 200 B

[2a? + 8aZ 82 + 2a(a? + 4al 8%)1/2)

by o= e (o + 4ad:8%)/r — & B

T [2a% + 8482 — 2a(a? + 4a2,B%)1/:)/:

The NBMO &, covers only starred atoms in R, 7.c., atous

in RS of opposite parity to 8. Hence the perturbation

leaves the charge densities of unstarred atoms in RS un-

changed to a first approximation. )
If atom t is a starred atom in RS, the coefficient of ¢, in

the NBMO being a,, then the coefficient of ¢, in the per-

turbed MO is given approximately by

/io =

e Qllirdotﬁr o _ (4)
1207 F 8a3, 8% = 2ot F dab 5 AT
The correspouding charge density at t due to occupation of
this MO by two electrons in RS, is then

duihe =

oo =L Beewn

17 200 843t = Balad + dalp)
~ ) o ) =
=gy, }1 + 2('1:6\ (-'3)

il o is small. Hence go; decreases as o decreases, which
proves the theorem, since a decrease in « implies an increase
in the electron affinity of S.

Theoren 35. If in the ecen AH RS, atom S is attached
ta alowi v in R, the mutual polarizability of atoms S, t is given
approximately by a3¢/2a,. This result follows at once
from equation (5) and the definition* of mutual polariza-
bility

T4 = Fos = Oq/Oas ™ aze/200:8 (6)

Theacem 36.  Increasing the electron affinity of a starred
atom in an odd AIl lowers the charge densitics at all other
positions by comparable amounts. Lect the odd A be RS,
derived from an even AH R and thie atomn S of coulowmb tern:
o (a small). From equations (38) and (40) of Part 11, the
charge deusity at atoni t is given by

oce o all a
. Gr B2 [N .
= 2 2k (” (En = a)’) RPN I
where n, is the number of electrons in the NBMO of RS.
Now since R is an AH, the levels E, oceur in pairs, = E,,,
with the same values for the squared coefficients @m:?, am:?.
Hence if « is sinall, the last term in (7) will be approximately
constant. Therefore
oce a a
. - 20 mr B* :
g constant Z(Em Z ) (8)



