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where oOI, J0, are the coefficients of $„ 4>, in the NBMO's . 
Usually the first approximation (RRS = 2a„b„f}!t) will be 
found sufficient. 

Alternant Molecules: "Starring."—Most of the present 
discussion will be confined to alternant mesomeric systems; 
that is, systems where the conjugated atoms can be divided 
into two sets such that no two atoms of the same set {like 
parity) are directly linked. The two sets are termed 
starred and unstarred, respectively, the designation being 
arbitrary. The only types of mesomeric system excluded 
by this restriction are those containing odd-numbered rings. 
Such non-alternant compounds are difficult to analyze by 
methods now available, although a certain amount of infor­
mation about them will be derived in the present investiga­
tion. The special properties of alternant hydrocarbons (AH) 
were first pointed out by Coulson and Rushbrooke,10 and 
they have been studied further by Coulson and Longuet-
Higgins.8 

Validity of the Approximation.—The kind of accuracy to 
be expected in quantitative applications of the method may 
be indicated by an example; the calculation of the resonance 
energy of butadiene considered as a combination of two 
molecules of ethylene. If the resonance integrals of the 
terminal bonds in butadiene are /3, and of the central bond 
x0, equations (16) or (17) give 

R=I^V (43) 

Solutions of the secular equation gives 

R = 2/S[(*2 + 4) ' / . - 2] (44) 

Here the methods previously described1 will be 
used to study mesomerism and aromaticity. The 
results appear as a series of formal theorems; of 
these the first ten have already been established by 
Coulson and Rushbrooke,3 by Coulson and Lon­
guet-Higgins/ and by Longuet-Higgins.5 They 
are stated without proof to save continual reference 
to the original papers. 

In theorems 11-17 the effect of conjugation be-

(1) For Part I see T H I S JOURNAL, 74, 3341 (1952). 
(2) Reilly Lecturer March-April, 1951. Present address: Univer­

sity of London, Queen Mary College, Mile End Road, London E.l, 
England. 

(3) C. A. Coulson and G. S. Rushbrooke, Proc. Camb. Phil. Soc, 36, 
193 (1940). 

(4) C. A. Coulson and H. C. Longuet-Higgins, Proc. Roy. Soc. 
(London), AIM, 39(1947); A192, 16 (1947); A193, 447, 456 (1948); 
A19S, 188 (1948). 

(5) H. C. Longuet-Higgins, J. Chem. Phys., 18, 265, 275, 283 (1950). 

If * = 1, the values obtained are 0.5/3 and 0.472/3, respec­
tively; if x < 1, to allow for the fact that the 2:3 bond in 
butadiene is longer than the others, the agreement is even 
better. 

Glossary 
Alternant10: an alternant mesomeric system is one in which 

the conjugated atoms can be divided into two sets such 
that no two atoms of the same set (like parity) are di­
rectly linked. One set is termed "starred," the other 
"unstarred," the designation of the sets being arbitrary. 

AH: an alternant hydrocarbon. 
Odd, even: a mesomeric system is classed as odd or even 

according as the number of conjugated atoms in it is odd 
or even. An even AH is a "normal" hydrocarbon, 
whereas an odd AH is necessarily a radical or ion (e.g., 
PhCH2=

1=, PhCH2). 
MO, AO: Molecular Orbital, Atomic Orbital. 
Starring: see alternant. If the numbers of atoms in the two 

sets are unequal, the more numerous set will be starred. 
NBMO: Non-bonding Molecular Orbital.9 An odd MO 

in an odd AH or non-Kekule AH which has zero energy 
(i.e., energy in this approximation identical with that of 
a carbon 2p AO). 

Active, inactive atom9: an inactive atom in an odd AH is one 
the coefficient of whose AO vanishes in the NBMO. 

CF: Canonical Form ( = resonance structure) 
Kekule compound: a compound with at least one unexcited 

CF. 
Isoconjugate': two mesomeric compounds are termed iso-

conjugate if they contain similar numbers of conjugated 
atoms in similar arrangements, and also similar numbers 
of delocalized electrons (e.g., benzene, pyridine, pyrimi-
dine are isoconjugate). 

Cross-conjugation: an odd mesomeric system is cross-con­
jugated if in the isoconjugate odd AH not all the starred 
atoms are active. 

TS : transition state. 
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The methods of Part I1 are used to establish a series of theorems which make it possible to account for the properties of 
alternant hydrocarbons. In particular conditions are derived for a system to be mesomeric, and for a mesomeric system to 
be aromatic. The unique position of benzene and azulene as units of aromatic structures is interpreted, and the nature of 
degeneracy and fractional bond order is discussed. The significance of classical bond structures is considered and an explana­
tion given for the instability of compounds for which no unexcited structures can be written. The treatment follows the 
lines laid down by Coulson, Longuet-Higgins and Rushbrooke,3 - 5 to whom a number of the theorems are due; but most of 
the results are new since they are derived ultimately from theorem 13 which is novel. 
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In the remaining theorems the significance of 
classical bond structures is discussed and reasons 
given for the well-known fact that no compound is 
stable unless at least one such structure can be 
written for it. A preliminary junction with reso­
nance theory is made at this point. 

Theorem 1. ^o m
2

p = i . (This implies that the maximum 
m 

charge density at any atom in a conjugated system due to 
OCC 

the mobile electrons, is two since qr = 2 Y1 s j , ) . 
m 

Theorem 2. If the total energy of the mobile electrons is E, 
then Z)E/da, = </,, where ar is the coulomb term of atom r. 

Theorem 3. Likewise — d£/d/3 r s = 2/>rl 
Theorem 4. The energy levels of an even AH (i.e., an alter­

nant hydrocarbon with an even number of conjugated atoms') 
occur in pairs, of energy ±Em. 

Theorem 5. The coefficients of the AO's in such a pair of 
related MO's of an even AH are identical in absolute magni­
tude, and differ only in that the signs of one set of AG's of 
similar parity are inverted. 

Theorem 6. The energy levels of an odd AH occur in pairs, 
as do those of an even AH; the odd NBMO left over has zero 
energy, and the coefficients of the unstarred AO's vanish. 

Theorem 7. If the NBMO coefficients of the AG's of 
atoms r, s, t. . . linked to an unstarred atom p in an odd AH 

are am, am ,«.01 . ., then Y u0rft,r = 'I. This important result''1 

enables one to write down (he XBMO coefficients for an 
odd AH at sight, without solving any secular equations. 
It will usually be assumed that the /3's are all equal, when 
V a„ = O. 

Theorem S, In a neutral All, the charge density at each 
atom is unity. 

Theorem 9. 'The resonance energy in, and bond orders of, 
an alternant heterocyclic compound are the same, to a first 
approximation, as those of the equivalent AH. 

Theorem 10. ir,.s = r,., and ir,t., = I1 xr.,t where 7rr,s is 

the mutual polarizability of atoms r, s, 7r8t.r the bond-atom 
polarizability between atom r and the bond between atoms 
s, t and Tr,!t the corresponding atom-bond polarizability.1' 

Theorem 11. The resonance, energy of RS relative to K + 
S, where R and S are even, is given approximately by 0p„. 
This result follows at once from equations (29) and (41 "of 
Part 1.' ' ' 

Theorem 12. If R, S are both odd radicals and if their 
singly occupied MO's are of like energy then RRS (the resonance 
energy of RS relative to (R + S)) is given approximately by 
2Pp1,. This result follows likewise from equations (11) and 
(42) of Part I , ' . 

Theorem 13. If R, S are odd AH radicals, then RR$ is 
given approximately by 2ao,b0,/S. This follows at once from 
equation (42) of Part I1; the extension to the case where 
R, S are multiply linked is obvious. 

Theorem 14. If R, S are not both odd, then RnS varies 
approximately as 0-. This follows at once from equation 
(4 0 of Part I.1 

Theorem IS. If R, S arc both odd radicals, and if their 
singly occupied MO's have like energy, then Rn* varies ap­
proximately as /S. This follows likewise from equation (42) 
of Part 1.2 

'Theorem 16. In an even alternant compound with 2n 
conjugated atoms, of which not more, than one is a hetcroalom, 
there are n levels with positive, n with negative energy. Let the 
compound be RS, derived from an odd AH R and a hetero-
atom S of coulomb term a. Then the secular equation of RS 
is given7 by 

II ( W ,) -' W 
I m W'-Em\ (J (D 

(T>) These coefficients are defined^ by 

TT,.S = Qq./Oa1; 7rs t, r = dpsl/dar; 7i-r,s: = d g r / d & , 

They ind ica te the va r i a t i on in p rope r t i e s o[ the molecule with t he 
resonance in tegra ls uf bonds and cou lomb t e rms of a t o m s in it . 

•7) M . J . S. Dcwiir, I'ru:.. C.iimb. Phil. .SV., 45 , (WJ (J!)l'.i) 

The roots of this equation differ from the Em unless there is 
degeneracy, or unless a coefficient amr vanishes; and from 
theorems (4) and (5), and the discussion of degeneracy in 
Part I,1 it follows that the identical roots must factorize out 
of equation (1) in pairs, with energies ± £ » . Therefore the 
theorem need be proved only for the roots of the simpler 
equation of order %p 

f( (W) = W - a - S 
W 

= O (2) 

where the identical roots of (1) have been removed. Now 
f(W) has asymptotes at W = Em, and it is easily shown that 

DW 
-ri(W) > O (3) 

Thus the energy levels of RS interlace with those of R; and 
since (2p — 2) levels of R occur in pairs of energy ±Em, and 
the remaining level has zero energy, p roots of (2) are positive 
and p negative; this proves the theorem. 

It can be shown that the same result will usually hold for 
systems with more than one heteroatom, unless the ratio 
of their number to that of carbon atoms is high or their 
electron affinities great. 

Theorem 17. Ras > O. This follows at once from theo­
rem 16 and equations (41) and (42) of Part I,1 if RS contains 
not more than one heteroatom, for all the terms in the ex­
pressions for RRS are then positive. The extension to cases 
with several heteroatoms is less definite hut it can be made in 
first approximation by invoking theorem 9. 

Theorem 18. The difference in total mobile electron energy 
between an even AH with n conjugated atoms, and the odd AH 
with (n + T) conjugated atoms formed from it by attaching a 
carbon atom to it at one point, is of order /3, but somewhat less 
than 0. Let the even AH be R, the atom S. Then the 
energy difference is given by (cf. equation (32) of Part I1) 

occ » . a l l c , 

= -2£ ! 

to a first 

Ir = 2 £ «L 

approximation 

E - -
occ -

2 y r™.?: 
E,„ 

= 

— 

1 

- 02_ 

p" 

(4) 

since RS is an AH (cf. theorems 4, 5). The charge density 
at atom r is given by theorem 1 

(5) 

(6) 

where En is the mean value of E„. Xow if the resonance 
energy of R were zero, Em would equal — 0. The actual 
resonance energy is positive (theorem 17), but small com­
pared with the total ir-electron energy since it represents 
only a small perturbation of the total 7r-electron energy. 
Hence Em is slightly less than — 0, and so AE is slightly less 
than 0, but of the same order of magnitude. 

Theorem 19. Likewise addition of one carbon to an odd 
AH, giving an even AH with one more conjugated atom, 
lowers the total ir-electron energy by somewhat more than 0. 
Let the odd AH be RS, derived from an even AH R and an 
atom S. Let addition of a further atom T give the even AH 
RvST. From theorem 17, the resonance energy of RST 
relative to (R + ST) i.e., (R + ethylene), is positive. The 
difference in ir-electron energy between R and RST is there­
fore greater than 2/3 (though only slightly greater, since the 
difference is a second-order perturbation). But from 
theorem 18, the difference in jr-electron energy between 
R and RS is somewhat less than /3. Hence the difference-
in 7r-eIectron energy between RS and RST is somewhat 
greater than /3. 

Theorem 20. The difference in total ir-electron energy be­
tween an odd AH R and an even AH RS formed by adding 
one atom S, is given by 2&Yja°' where S is attached to R at 

atoms r. This follows from Theorem 13. It is an im­
portant result since the XBMO coefficients of an odd AH 
can be calculated so simply (theorem 7), and since energy 
differences of this type govern the rates of many reactions. 
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Theorem 21. Even alternant compounds containing six-
membered mesomeric rings are more stable than corresponding 
open-chain iompounds by approximately /3 per ring. Con­
sider the corresponding AH RS, derived from an odd AH 
radical R and an atom S, where S forms part of the ring. 
From theorem 20 

RRS = 2(3(aor + dot) (7) 
whore atom S is attached to atoms r, t. Now two open-
chain compounds (RS) ' , (RS)" can be derived by attaching 
atom S to atom r only, or to atom t only; the corresponding 
resonance energies are 

R'RS = 2/3(a„r) (8) 

R"m = 20(a„t) (9) 

and from theorem 19, both R'RS and R"R$ axe. of order &• 
Hence from equations (7-9), .ftps is greater than R'-RS or 
•R"RS by approximately /3, which proves the theorem for the 
monocyclic case. The argument can be extended in a simi­
lar manner to polycyclic compounds. For an illustrative 
example see Theorem 23. 

Theorem 22. A non-alternant even AH with one odd-
numbered ring has approximately the same resonance energy 
as an AH derived from it by opening the ring. The proof 
follows the same lines as that of theorem 21; but here atom 
S (in the odd-numbered ring) is attached to atoms (r, t) of 
opposite parity. Hence either am or oot vanishes. Also 
RS can be converted to a classical AH by breaking the bond 
between S and that atom r or t whose coefficient vanishes 
in the zero MO of R. From equations (7-9), it follows that 
such a change leaves the energy unchanged in first approxi­
mation. 

Theorem 23. Azulenes should be semi-aromatic, having 
resonance energies intermediate between corresponding de-
capentaene and naphthalene derivatives. Consider azulene (I) 
itself. Azulene can be derived from a carbon atom and a 
nonatetraenyl radical ( I I ) ; as also can the three analogous 
decapentaenes ( I I I ) , and naphthalene (IV). The NBMO 
coefficients of (II) can be calculated by using theorem 7 and 
are given in ( I I ) 

A A A A AsA 

H I 

Wl 

—i iVB A A 

\ / 
W 5 l V 5 

II 

Vk 

IV 

The approximate differences in ir-electron energy between 
(I) , ( I I I ) and (IV) can be calculated from theorem 20 

I I I = 2 / 3 A / 5 

I = 4(3A/O 

IV = 6/3V5 (10) 

Hence azulene is approximately half-way between naph­
thalene and decapentaene in stability. The proof can be 
extended to any azulene derivative, containing no other 
odd rings, since in each case removal of one azulene bridge 
carbon leaves ah AH radical, and in reconstructing azulene 
from it, only two of the NBMO coefficients at the points of 
attachment are non-vanishing, whereas all three are non-
vanishing in the isomeric naphthalene. 

Theorem 24. Azulene and benzene are the fundamental 
units of even aromatic systems. Consider first a cyclic AH 
RS with 2re atoms in the ring. Removal of one atom S 
from the ring leaves an open-chain AH radical R, in which 
the NBMO coefficients are alternately ± K1A (theorem 7). 
The energy of the cyclic AH is then given relative to R by 

RRS = 20(n1/* + ( - 1 ) » M V 2 ) (11) 

If n is even, RRS vanishes; if n is odd, RRS is approximately 
double the value R'RS, of an analogous open chain polyene. 
Thus aromatic character is confined to compounds with 6-, 

10-, 14- . . . numbered rings; and since the resonance en­
ergy can be large only if the rings are approximately planar 
and symmetrical, steric factors tend to limit aromatic prop­
erties to six-rings. The same argument can be applied in 
the bicyclic non-alternant series to show that azulene oc­
cupies a unique position. (It corresponds actually to the case 
of a simple 10-ring, the trans-annular bond not contributing 
to the stability, but assisting with the stereochemical diffi­
culties. Similar behavior may be anticipated in higher 
members of the series, e.g. (V), but the tendency to isomer-
ize to 6-ring derivatives should become progressively greater, 
and the effective stability progressively less. Thus iso-
merization of (V) to anthracene should be about twice as 
exothermic as isomerization of azulene to naphthalene). 

V 

Theorem 25. The bond-orders in an open-chain polyene 
alternate, the structure corresponding qualitatively to the 
classical representation. Let the polyene be RST, where S 
is a carbon atom linked to polyene fragments R, T. Let 
R be singly linked to S in the classical representation of 
RST; then R is an even AH. Likewise if T is doubly 
linked to S in the classical representation, T is an odd AH. 
To a first approximation (first-order perturbation theory) 

Pn = 0 

Prt = «ot (12) 

where aot is the coefficient of the NBMO of T at the point 
of attachment of R. The second-order perturbation terms 
should be less than these first order ones; therefore the classi­
cal "double" bond ST has a higher order than the "single" 
bond RS. The argument can be applied successively to 
each atom in the polyene, thus proving that the "double" 
bonds have uniformly higher orders than the "single" ones. 

Theorem 26. Bond orders in aromatic compounds alter­
nate less than those in polyenes. This can be proved by the 
same argument used in proving theorem 25; here there is a 
first-order perturbation contribution to each bond. The 
relative bond orders can be found approximately by the 
NBMO method outlined above. The radicals (VI) and 
(VII) have the indicated NBMO coefficients; hence the 1:2 
bond in naphthalene has approximatelv twice the order of 
the 1:9 or 2:3 bonds. 

(« = 11- (d = S- 1A) 

a —2a 
VI 

The values of bond orders so calculated are only very ap­
proximate since the second-order perturbation contributions 
are appreciable; particularly in large molecules. 

K e k u l e F o r m s . — I t h a s long b e e n k n o w n t h a t as 
a r u l e c o m p o u n d s a r e s t a b l e o n l y if c lass ical s t r u c ­
t u r e s c a n b e w r i t t e n for t h e m in w h i c h all t h e b o n d s 
a r e rea l (i.e., jo in a t o m s w h i c h a r e a t a p p r o x i m a t e l y 
t h e i r n o r m a l b o n d - l e n g t k a p a r t ) . T h u s o- a n d p-
b e n z o q u i n o n e a r e well k n o w n , b u t t h e w - i s o m e r h a s 
n e v e r been p r e p a r e d . T h e specia l i m p o r t a n c e of 
s u c h K e k u l e fo rms , a s t h e y m a y b e t e r m e d , m a y 
n o w b e i n v e s t i g a t e d , s ince t h e M O t h e o r y does n o t 
d i r e c t l y a sc r ibe i m p o r t a n c e t o classical b o n d s t r u c ­
t u r e s . C o m p o u n d s for w h i c h o n e or m o r e Kekule" 
fo rms m a y b e w r i t t e n will b e ca l led K e k u l e c o m ­
p o u n d s , t h o s e w i t h n o Kekule" fo rms , n o n - K e k u l e 
c o m p o u n d s . I n e a c h l owes t - exc i t ed c a n o n i c a l f o r m 
( C F ) for a n o n - K e k u l e c o m p o u n d , t w o o r m o r e 
a t o m s will b e l i n k e d b y v i r t u a l b o n d s . S u c h a t o m s 
will b e ca l led active (c/. L o n g u e t - H i g g i n s 5 ) - C o n ­
s ider o n e C F of a n a l t e r n a n t n o n - K e k u l e c o m p o u n d , 
a n d cons ide r a s t a r r e d 3 a c t i v e a t o m in i t . O t h e r 
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similar CF's can then be obtained by allylic shifts 
of the active atom; e.g. 

> C A - C = C 8 < <-> > C A = C - C B < 

The path over which the activity of the starred 
atom can be transferred may be termed a starred 
segment of the molecule; likewise an unstarred ac­
tive atom will define an unstarred segment. 

Theorem 27. A non-Kekule AH with m active atoms has 
m MO's of zero energy. This theorem is due to Longuet-
Higginss; the proof given here provides a clearer insight 
into the phenomenon. Consider first the case where the 
active atoms Ai, A2 . . . A„ are all starred. Consider the 
residue R left when the active atoms are removed from the 
system; R is then by definition an even Kekule AH. Con­
sider the odd AH radical RAi; this will have a NBMO 
covering only starred atoms (Ai being starred). Now re­
generate the original AH by adding the atoms (A2 . . . Am). 
Since these are attached to unstarred atoms in RAi, where 
the coefficients of the NBMO in RAi vanish, thev do not 
affect that MO (cf. Part I1). Likewise the NBMO's of 
RA2, R A J , RAm survive intact in the parent AH, which 
therefore contains m independent NBMO's. 

Now consider the case where there are both starred and 
unstarred active atoms present. It is evident that no 
starred segment of the AH can contain an unstarred active 
atom; otherwise a starred active atom could be brought 
next to it by allylic shifts, and an extra real bond then 
formed—in contradiction to hypothesis. I t is also evident 
that a starred segment can be attached to the rest of the 
molecule only through unstarred atoms; otherwise the 
active atoms could be transferred outside the active segment 
by allylic shifts. Let the starred segment contain r active 
atoms and consider the starred segment in isolation. It 
will contain r NBMO's with density vanishing at unstarred 
atoms. Since the rest of the molecule is attached to it 
only at unstarred atoms, these NBMO's must survive in­
tact in the whole molecule. The same argument applies to 
each of the other segments, starred or unstarred, so that the 
whole molecule, with m active atoms, must have m NBMO's. 

Theorem 28. A non-Kekuli AH is a polyradical. This, 
as Longuet-Higgins8 has pointed out, is an immediate corol­
lary of theorem 27 and Hund's rule. 

Theorem 29. A non-KekulS AH is less stable than a Kekule 
isomer. Consider a non-Kekule AH RA, A being an active 
(starred) atom. Since the NBMO's of R have zero density 
at the point of attachment of A, R and RA have similar 
jr-electron energies in the approximation of first-order per­
turbation theory (theorem 13). Consider an isomer R'A, 
where A is attached at an active atom in R; if the coeffi­
cients of the NBMOs of R at this atom are a„u a0, . . . uor, 
then the Tr-electron energy difference A between RA and 
R'A, will be given by (theorem 13) 

AR = - 2 0 ^ y 1 " ' (13; 
r 

to a first approximation. Also R'A evidently contains two 
active atoms less than does RA. Continuing this argument, 
the most stable isomers of RA will be those with the fewest 
active atoms—i.e., the Kekule isomers. 

Theorem 30. If an AH has n starred atoms and m un­
starred atoms (n > m), at least (n — m) atoms are active. 
This is an evident corollary from the method of proof of 
theorem 27. 

Theorem 31. Theorem 29 holds also for heteroatomic al­
ternant systems. This follows from theorem 9. Theorems 
27 and 28 do not hold for heteroatomic systems, so this re­
sult alone accounts for the instability of non-Kekule hetero­
atomic compounds. 

Theorem 32. At least two unexcited CF's can be written 
for an aromatic AH. This follows from the method of 
proof used in theorem 21; the two unexcited CF's corre­
spond to the open-chain compounds (RS) ' and (RS)". 

Theorem 33. Symmetrical monocyclic AH's with 4n con­
jugated atoms are biradicals. This follows from the method 
of proof of theorem 24; if the AH RS, with 4n atoms is dis­
sected into an odd AH R and one atom S, the NBMO of 
R survives in RS. Since NBMO's in an even AH can oc­
cur only in pairs (theorem 4), RS contains a t least two 
NBMO's and is therefore a biradical. This theorem is not 

of much importance since cyclobutadiene does not seem to 
exist as a stable entity, and since the higher members of the 
series are prevented by stereochemical factors from adopting 
symmetrical coplanar structures. 

Discussion 

This set of theorems provides a satisfactory basis 
for the discussion of mesomerism, and one free from 
certain difficulties and inconsistencies of the current 
VB approach. 

From theorem 9, due to Coulson and Longuet-
Higgins,4 the structure and resonance energy of a 
heteroatomic systems is similar in first approxima­
tion to that of an analogous hydrocarbon. From 
theorem 17, it follows that a set of n atoms form a 
conjugated system if AO's on those atoms mutually 
overlap; and from theorem 16, the system will be 
most stable if the n AO's contain n electrons, or if 
n is odd and they contain (n ± 1) electrons. From 
theorems 14 and 15, the resonance energy will be 
greater, the greater the resonance integrals between 
the AO's; this accounts at once for the fact that 
conjugation is important only if the AO's are p or 
dAO's, and if the AO's overlap well (so that in the 
usual systems with p AO's, the component atoms 
should be approximately coplanar). 

These rules for mesomerism are more precise than 
those given by resonance theory.' Thus they ac­
count at once for the difference between butadiene 
and ethane; whereas in resonance theory, excited 
CF's such as (VIII) must be invoked to explain the 
mesomerism of butadiene, and yet analogous ex­
cited CF's such as (IX) can be also written for the 
non-mesomeric ethane. 

i 1 H H 
C H 1 - C H = C H 2 - C H 2 CH, CH2 

VIII IX 

(Indeed, more such singly excited CF's can be writ­
ten for w-butane than for butadiene, although the 
resonance energy of the latter is much the greater.) 

The neutrality and zero dipole moments of AH's 
are explained at once4 by theorem 8; the theorem 
does not apply to non-alternant hydrocarbons such 
as fulvene or azulene, and these are now known to 
have appreciable dipole moments. I t does not 
seem possible to account for this difference in any 
convincing way on the basis of resonance theory, 
but the moments have been interpreted theoreti­
cally9 by use of the MO method. 

It has been commonly suggested that the MO 
method does not adequately account for the suc­
cess of classical valency structures in representing 
the properties of simple molecules. This conten­
tion is met by the results of theorems 27-31, which 
indicate the importance of such structures, and in­
dicate that compounds with no unexcited CF's 
should be relatively unstable (e.g., m-quinones). 

Theorems 21-24 account for the special and spe­
cific stabilities shown by aromatic and pseudoaro-
matic structures, and for the lesser stability of the 
latter (e.g., azulene) compared with the former. 
Also the fact that open-chain polyenes can be rep­
resented approximately by single valence bond 

(8) Cf. G. W. Wheland, "The Theory of Reionance," John Wiley 
and Sons, Inc., New York, N. Y., 1944. 

(9) Cf. G. W. Wheland and D. E. Mann, / . CJwrn. Phys., 17, 264 
(1949). 
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structures, whereas aromatic and pseudoaromatic 
compounds cannot, is explained by theorems 25 and 
26. 

The large stabilities of odd AH radicals is inter­
preted well by theorems 18 and 19; there is no great 
difference in the average 7r-electron energy per con­
jugated atom between odd and even AH's. 

The analysis also provides some useful semi-quan­
titative methods for estimating the energy differ­
ences between odd AH's and even AH's derived 
from them by addition or subtraction of carbon 
atoms, and between AH's and fragments obtained 
by their dissection (theorems 7, 11, 12, 13, 20). 
These methods will later prove of fundamental im­
portance in the interpretation of chemical reactivity 
and light absorption. The resonance theory pro­
vides no analogous techniques. Admittedly at­
tempts have often been made to correlate the stabil­
ity of molecules with the numbers of unexcited CF's 
that can be written for them, but this procedure has 
no basis in VB theory; and A. and B. Pullman10 

have shown that the assumption that unexcited 
CF's always make the major contribution to the 
ground state of a molecule is itself quite incorrect. 
(The problem will be discussed in detail elsewhere.) 

The present treatment does show, however, that 
at least (r + 1) unexcited CF's can be written for 
any aromatic compound with r six-rings (theorem 
32); but it does not follow that an AH for which 
two or more unexcited CF's can be written will show 
aromatic properties {cf. the 4w-membered cyclic 
polyenes which should show little extra stability 
over open-chain analogs). However, the argu­
ments used to prove theorems 25 and 26 do imply 
that alternation of bond orders should be small in 
compounds for which two or more unexcited CF's 
can be written; and that such a compound should 
not be represented accurately by a unique classical 
bond structure. The present picture of mesomeric 
molecules thus fits in well with the current reso­
nance interpretation, but it is more complete as well 
as being better based in theory. 

The resonance energies of aromatic compounds 
can be calculated approximately by using theorem 
13, if 7r-electron energies of radicals obtained by its 
fragmentation are known. Thus anthracene (X) 
can be derived from the union of two benzyl radi­
cals (Xl); the NBMO coefficients of the latter are 
indicated in (Xl) 

cm .5;:: -rr 
\ - 2 \ / 7 1V7 

X XI 
The 7r-electron energy of benzyl is easily calculated 
to be 8.720. The x-electron energy e of (X) 
should then be given by 

( = 2 X 8.72/3 + 2 / 3 0 + 1 ) = 18.58/3 (14) 

Subtracting the energy of one unexcited CF (14/3), 
the calculated resonance energy R is 4.58/3, in fair 

(10) A. Pullman and B. Pullman, Exferientia, 2A, 364 (1946); cf. 
A. Pullman, Thesis, Paris, 1946. 

agreement with the accurate MO value (5.3IjS11). 
The values calculated by this method should be too 
low, since the higher order perturbation energies are 
neglected; but there is an excellent linear correlation 
between the approximate and exact values (Fig. 1). 

0 1 2 3 4 5 6 

AJ?//S from secular equation. 

Fig 1. 

Although more exact empirical methods are avail­
able for estimating such resonance energies without 
great computational labor,12 the present treatment 
may be useful for rough calculations. For instance 
it explains in a simple way why the linear polya-
cenes are less stable than the isomeric polyphenes; 
thus in the formation of phenanthrene (XII) from 
(Xl), the first-order perturbation energy is greater 
by /3/7 than in the formation of (X) from (XI); 
and it can be shown that a similar relation holds 
generally between isomeric acenes and phenes. 

W 
v 

XII 

One further point may be emphasized. It has 
commonly been asserted on the basis of resonance 
theory that mesomerism requires almost perfect 
coplanarity of the conjugated system. This is 
quite incorrect; theorems 14 and 15 show that the 
resonance energy of RS relative to (R + S), al­
though greatest when the system is coplanar, varies 
only as cos 8 or cos2 8 where 8 is the angle through 
which S is twisted out of coplanarity with R; since 
the resonance integral /3RS is given approximately 
by 

4 s & c o s 8 (14) 

where /3RS is the value of /3RS for an angle of twist 
8. This factor becomes important in the triaryl-
methyl radicals which are very far from coplanar; 
current calculations of their resonance energies are 
undoubtedly incorrect (they assume coplanarity of 
the molecule, which is impossible for steric reasons), 

(11) G. W. Wheland, THIS JOURNAL, 63, 2025 (1941). 
(12) R. D. Brown, Trans. Faraday Soc, 46, 1013 (1950). 
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but so too is the argument that the resonance ener- This point will be discussed in more detail else-
gies of such non-coplanar compounds must be small where. 
and their stabilities due solely to steric factors. NOTRE DAME, INDIANA 

!CONTRIBUTION FROM THE UNIVERSITY OF NOTRE DAME] 

A Molecular Orbital Theory of Organic Chemistry. III.12 Charge Displacements and 
Electromeric Substituents 

BY M. J. S. DEWAR5 

RECEIVED SEPTEMBER 13, 1951 

The methods of the preceding papers1 '2 are used to analyze the displace ments of charge in an AH when one or more carbon 
atoms are replaced by heteroatoms, or when electromeric substituents are introduced. The effects of heteroatoms had been 
considered previously by Coulson and Longuet-Higgins,4'5 but here they will be studied by an alternative and more accurate 
method. Conditions are found for two electromeric substituents to conjugate with one another through an intermediate 
niesomeric system. The results of this treatment agree qualitatively with those of current theory, but the possibility now 
appears of estimating various effects semi-quantitatively within the limitations1 of the present methods. 

The next step in the program is to analyze the 
nature, causes and effects of charge displacements in 
conjugated systems due to the presence of hetero­
atoms and electromeric substituents. Consider­
able progress has been made already in the analysis 
of changes in an AH caused by replacing one or 
more carbon atoms by heteroatoms, by Coulson 
and Longuet-Higgins4 and by Longuet-Higgins.5 

In particular they were able to derive the classical 
"law of alternating polarity'' for such systems. 
Here the same general problem is considered to a 
higher approximation by using the new relations 
gjven in Parts I1 and II.'2 It will also prove possible 
to discuss the effects of electromeric substituents 
which lay outside the scope of the previous treat­
ment. These two topics are discussed in theorems 
34-39 and 40-45, respectively. Theorem 37 is due 
to Longuet-Higgins.'1 

In theorems 4(i-4!) the ability of two groups to 
conjugate with each other ("mutual conjugation") 
through an intermediate mesomeric system is con­
sidered, and as a result rules (theorems 50-53) arc 
found for describing the relative activities of elec­
tromeric substituents semi-quantitatively (this 
problem will be discussed further in Part VT). 

Qualitatively, the present treatment will be 
found to give conclusions similar to those reached 
by current theory. 

Theorem 34. The main, effect of an increase in electron 
affinity of an unstarred atom in an even AH is to decrease the 
charge densities at all starred atoms. Let the AH be RS, 
derived from an odd AH R and an atom S of coulomb term 
a. if \a\ is small, there will be a zeroth order perturbation 
of the AO ^ of S and the XBMO *„ of R. This effect will 
be larger than any due Io hjgher perturbations; and so a 
first approximation to the change iu charge density with « 
may be found from 2 consideration of the corresponding 
change in the pair of MO's arising from \p and <tv 

The secuia" equation for the perturbed energies is 

1I , ""!t3 = W1 - alv - dirP'' = 0 (1) 

(1) Fpr Part I see Tjns JOURNAL, 74, 3341 (1952). 
(2} For Part II see ibid., 74, 3345 (1952) 
(3) ReiSly Lecturer, March-April, 1951. Present address: Univer­

sity of Lyndon, C/ueen Mary College, Mile End Road, Loadon, K.l, 
England. 

(4) C. A. Coulson and H. C. Longuet-Higgins, Proc. Roy. Soi. 
(London). A191, 39 (1947); A192, 16 (1947); A193, 447, 4.i<>, (1918), 
A195, 188 (1948). 

(5) H. C. Longuet-Higgins, J. Chan. Phys., 18, 26,5, 275, 28S i 1950). 

with the solutions 

W = ^ (a ± (a2 + 4a2
r/3

2)'/=) (2) 

Of these the lower level alone will be occupied in RS. The 
coefficients bs of \p, b0 of <&0, in this MO are given by 

; = _ 2aot0 

'" ]2«2" + 'SalJ*"+ 2a(J + 4a0
2
r/3?)'A] 1A 

; = («2 + 4ag.r/3
2)'A - a _ 

[2a2 + 8a 2
o r /3T- 2«(a2 + 4a2,nS

2)IA],A { ' 

The NBMO $„ covers only starred atoms in R, i.e., atoms 
in RS of opposite parity to S. Hence the perturbation 
leaves the charge densities of unstarred atoms in RS un­
changed to a first approximation. 

If atom t is a starred atom in RS, the coefficient of 4>t in 
the XBMO being aet, then the coefficient of <j>t in the per­
turbed MO is given approximately by 

, _ 2j4rOoy3_ ,,•. 
' " " |2«2 ~+"8a~itp~- 2a(«* + 44^ r )Vi]V» w 

The corresponding charge density at t due to occupation of 
this MO by two electrons in RS, is then 

__ 8 a | r o | t ^ _ 
''"' ~ 2a-"+ 8 c 2

r > - 2«(a2 + 4a!/32)1 A 

if a is small. Hence got decreases as a decreases, which 
proves the theorem, since a decrease in a implies an increase 
in the electron affinity of S. 

Theorem 35. IJ in the even AH RS, atom S is attached 
to atom r in R, the mutual polar izability of atoms S, t is given 
approximately by ag t/2aor . This result follows at once 
from equation (5) and the definition4 of mutual polariza-
bility 

Ts, i = Tt.s = Ogi/das — ait/2a & 13 (6) 
Theorem 36. Increasing the electron affinity of a starred 

atom in an odd All lowers the charge densities at all other 
positions by comparable amounts. Let the odd All be RS, 
derived from an even AH R and the atom S of coulomb term 
a (a small). From equations (38) and (40) of Part I1, the 
charge density at atom t is given by 

where n, is the number of electrons in the NBMO of RS. 
Now since R is an AH, the levels Em occur in pairs, ± £ m , 
with the same values for the squared coefficients amr

2, amt
a. 

Hence if a is small, the last term in (7) will be approximately 
constant. Therefore 

(/i. - constant — - 2^ ?J? r W 


